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Abstract

The constitutive postulations for mixed-hardening elastoplasticity are selected. Several homeomorphisms of irre-
versibility parameters are derived, among which X? and X? play respectively the roles of temporal components of the
Minkowski and conformal spacetimes. An augmented vector X, := (YQ}, YQS)1 is constructed, whose governing
equations in the plastic phase are found to be a linear system with a suitable rescaling proper time. The underlying
structure of mixed-hardening elastoplasticity is a Minkowski spacetime M"*! on which the proper orthochronous Lo-
rentz group SO,(n, 1) left acts. Then, constructed is a Poincaré group ISO,(n, 1) on space X := X, + X, of which X,
reflects the kinematic hardening rule in the model. We also find that the space (Q!, ¢2) is a Robertson-Walker spacetime,
which is conformal to X, through a factor Y, and conformal to X, := (pQ;,pQg)l through a factor p as given by
p(g8) = Y(g8)/[1 — 2py0°(0) + 2p, Y (g2)0°(¢2)]. In the conformal spacetime the internal symmetry is a conformal group.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The formulation of yield criteria of Tresca and of von Mises was the first key step in developing plasticity
theory. However, without a plastic stress-strain relation, the criteria can do little. The incremental stress-
strain relations proposed by Saint-Venant and Lévy represented a giant step forward in plasticity theory.
Since then the incremental or rate type point-of-view has been most frequently taken in formulating
constitutive equations of plasticity, which describe the evolutions of internal state variables. This kind of
rate-equation representations is now composed of separately specified but interwoven ingredients, including
the elastic part, yield condition, loading-unloading criterion, plastic flow rule, isotropic hardening rule and
kinematic hardening rule, etc.

Because of the nonlinear nature of the model ingredients in plasticity, there seems necessary although
difficult by composing all ingredients together to derive a global theory of plasticity, which not only gives
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directly a local response of the material in the time domain once an input is prescribed, but also facilitates
us to handle model property from a global view. To do this several thresholds need to be stridden across.
The first is integrating the rate-type equations, which consist of separated but interwoven ingredients
specified on a high-dimensional space such as states in stress space and paths in plastic strain space and
their product space. The second is solving the irreversibility parameters, such as the equivalent plastic
strain, dissipation, and so on, and in general there exist monotonic mappings between these parameters.
The third as to be strongly emphasized here is studying symmetry properties of the model and its intrinsic
spacetime structures.

The differential nature of plasticity laws has been discussed for a long time. The invariant yield condition
in stress space renders a natural mathematical frame of plasticity theory from the view of differentiable
manifold and its Lie group transformation. In this paper we are going to make an effort to study the in-
ternal symmetry groups and the underlying spacetime structures for mixed-hardening elastoplasticity. The
Lie group theory provides a universal tool for tackling considerable numbers of differential equations when
other means fail. Indeed, group analyses may augment intuition in understanding and in using symmetry
for formulation of physical models, and often disclose possible approaches to solving complex problems.

Recently, Hong and Liu (1999a,b, 2000) have considered constitutive models of perfect elastoplas-
ticity with and without considering large deformation and of bilinear elastoplasticity, revealing that the
models possess two kinds of internal symmetries, characterized by the translation group 7'(n) in the off (or
elastic) phase and by the projective proper orthochronous Lorentz group PSO,(n,1) in the on (or elas-
toplastic) phase for the first two models and the proper orthochronous Poincaré group PISO,(#, 1) in the
on phase for the bilinear model, and have symmetry switching between the two groups dictated by the
control input. Moreover, Liu (2001, 2002) applied a PDSO,(n, 1) symmetry to formulate a mathematical
model of visco-elastoplasticity, and then Liu (submitted for publication) employed a two-component spinor
representation to unify finite strain elastic-perfectly plastic models with different objective stress rates and
showed that the Lie symmetry in the two-dimensional spinor space is SL(2, H) with H denoting the qua-
ternionic number. In this paper some of those results are extended to the model of mixed-hardening
elastoplasticity, investigating the influence of nonlinear hardening parameters on the structure of the un-
derlying vector spaces and on the transformation groups of internal symmetries.

2. Constitutive postulations

In terms of five-dimensional stress vectors and five-dimensional strain vectors:

11 2 11 22
ars'' + ars™ aisy' + as, aisy + arst
11 2 11 22
azs' + ays? azs, + ags; Sy + Sy,
— 23 — 23 23
Q= s Q. = s; ;o Qp= Sy , (1)
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€ e e},

the tensorial form of elastoplastic model with mixed-hardening rule, e.g., Hong and Liu (1993):

&= ¢+ ¢, (3)
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S =S8, + Sp, (4)
§ = 2G&, (5)
Js, = 210, (6)
$p = 2K'¢P, ()
sl < V275, (8)
Ai=0, 9)
sl = V2104, (10)
can be equivalently re-expressed by the following vectorial form:
9=4q+q", (11)
Q=0Q, +Q, (12)
Q = k', (13)
Q.45 = 0.", (14)
Q, = k", (15)
1Qull <0, (16)
495> 0, (17)
1Qullgs = Qs (18)
In Egs. (1) and (2),
a, := sin (0—&—%), a, :=sin0, a3 :=cos (Q—i—g), ag :=cos 0, (19)

where 0 can be any real number. If choosing 6 = 0 we have the stress space Q := (v/3s''/2,s'/2 + 52,
s, 513 s12)" of Iyushin (1963). Throughout this paper, a superscript t indicates the transpose, and a su-
perimposed dot denotes a differentiation with respect to time.

In the tensorial representation of elastoplastic model with Prager’s kinematic hardening rule combined
with isotropic hardening rule as shown by Egs. (3)-(10), e, €%, eP, s, s, and s;, are, respectively, the deviatoric
tensors of strain, elastic strain, plastic strain, stress, active stress and back stress, all symmetric and
traceless, whereas A is a scalar evaluated by

t
o= [ VA (20)
0
where ||€P|| := v/¢éP - P defines the Euclidean norm of éP and a dot between two tensors stands for their inner

product. From Egs. (1) and (2) it follows that

Isall” = 201Qu[1%, 54 - & = 2Q}4. (21)
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The material functions and plastic multipliers in the above two equivalent representations have the fol-
lowing relations:

ke =2G, ky=2K, Q=1 245=i (22)

The norm of an n-vector Q is defined as ||Q|| := /Q'Q. Depending on the number of nonzero stress
components in Eq. (1) (and correspondingly nonzero strain components in Eq. (2)) which we consider for a
physical problem, for example, the axial tension-compression problem, the biaxial tension-compression-
torsion problem, etc., the dimension » may be an integer with 1 <7 <5, and no matter which case is we use
n to denote the physical problem dimension. The bold-faced letters q, q°, ¢°, Q, Q, and Q,, are, respectively,
the n-vectors of generalized strain, generalized elastic strain, generalized plastic strain, generalized stress,
generalized active stress and generalized back stress, whereas ¢ is a scalar. All q, q°, ¢°, Q,, Q,, Q and ¢
are functions of one and the same independent variable, which in most cases is taken either as the usual time
or as the arc length of the controlled generalized strain path; however, for convenience, the independent
variable no matter what it is will be simply called ““time” and given the notation ¢. The generalized elastic
modulus k. > 0, generalized kinematic modulus k,, and the generalized yield strength 0° > 0 are the only
three property functions needed in the model, and are functions of the equivalent generalized plastic strain
g4, which by Egs. (14), (17) and (18) and 0° > 0 is found to be

t t
i [ d@a= [ i@ (23)
The material is further assumed to be weakly stable (Hong and Liu, 1993):
ke +hy+0Y >0, ket k,>0. (24)

Here a prime denotes the derivative of a function with respect to its argument, for example,

oY = dQi(q5)/dgs.

3. Response operators

From Egs. (11)—(15) it follows that

A ke+k -q .
Q.+ o0 45Q, = keq, (25)

which, in terms of the integrating factor

V() = exp [ I’ ’de], (26)
can be integrated to
0 =y [Y@z(a))Qa(ri) ; / kgl Y (@) de|. @7)

Upon substituting Eq. (27) for Q, into Eq. (14) and integrating the resultant, we obtain

o + [ ewn.deie %)

q°(1) = q"(4) + e (g2 (5)
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where
@)= [ a0 (29)
G (p1,p2) = ke(p2) Y (p2)[C(p1) — C(p2)]. (30)

Integrating Eq. (13) after replaced its q° by q — ¢° due to Eq. (11), ¢° by the flow rule (14) and Q, by Eq.
(27), we obtain

Q) = Q1) + [G (g1 42()) — G (g(4). 43())] k?q—((’))) + [ eao.aenie e (31)
where

)= | ’ ﬁg’o’@) . (32)

(o1 p2) = ke(po) {1 - ¥(p2)[Culn) — Clp)]). (33)

Up to now three integral operators (27), (28) and (31) are established which map respectively generalized
strain rate histories into generalized active stress histories, generalized plastic strain histories and gener-
alized stress histories. Here ¢ is the (current) time and # is an initial time, at which initial conditions Q,(#),
q°(#:), Q(#) and ¢4(#) should be prescribed. Obviously, the expressions in Egs. (27), (28) and (31) that the
responses are in terms of the generalized strain rate history is useful only if the history of ¢{ is already
known. Thus gf deserves a more study, as will be pursued in the following two sections.

4. Switch of plastic irreversibility
The complementary trios (16)—(18) enable the model to possess a switch of plastic irreversibility, the

criteria for which are derived right below.
Taking the inner product of Eq. (25) with Q,, we get

pQ.a = 05 if [|Q.] = 0y, (34)
where
ﬁ . ke 0 (35)

=
ke+kp+Q2

is a material function. Since # > 0 and Q° > 0, Eq. (34) assures that

if Q. = 00 then Qld >0 & > 0. (36)
Hence,

{IQull = ©; and Q;q > 0} = g5 > 0. (37)
On the other hand, if ¢§ > 0, Eq. (18) assures ||Q, || = O°, which together with Eq. (36) asserts that

g5 > 0= {]|Q.]| = 0. and Q4 > 0}. (38)

Therefore, from Eqgs. (37) and (38) we conclude that the yield condition ||Q,|| = Q) and the straining
condition Q!q > 0 are sufficient and necessary for plastic irreversibility g4 > 0.
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Considering this and the inequality (17), we thus reveal the following criteria of plastic irreversibility:

.a:{éQM>o if [|Q, = 0! and Q\g >0, [oN]

39
=10 if |Q,]l < 0 or Q'q<0.  [OFF (39)

In the phase of the switch, ¢§ > 0, the mechanism of plastic irreversibility is working and the material
exhibits elastoplastic behavior, while in the phase of the switch, ¢j = 0, the material behavior is
reversible and elastic. According to the complementary trios (16)—(18), there are just two phases: @ q;>0
and [|Q,|| = 0%, and (2) 4§ = 0 and ||Q,|| < 0°. From the switch (39) it is clear that (1) corresponds to the

phase whereas (2) to the phase.

5. Measure of plastic irreversibility

The switch (39) together with the relation (26) reveals the core importance of ¢ and Y in the whole
model; we now go further to investigate their evolutions. Substitution of Eq. (27) into Eq. (34) and re-
arrangement yield

%YQﬁqS = Y(q5(1:))Q}(t)a(r) + /ti[ke(q(“)(f))Y(fJS(é))qt(t)fl(é)dé (40)
Let

2y [ 1O g, @)
such that

2=2="%q (42)
From the inequality (17) and Q0 > 0, > 0, and Y > 0 in view of the definition (26), we have

7=>0, 7= Ygg >0, (43)
which ensures the invertibility of the material function Z(g§). Hence,

9% = 9,(2) (44)

is available, and all the material functions that originally expressed in terms of ¢{ can be re-expressed in
terms of Z. However, for saving notations we use the same symbols to denote such new functions, for
example,

Y(Z) :=Y(q5(2))- (45)
Substituting Egs. (42) and (44) into Eq. (40), we obtain
Z(t) = Y (Z(6)Qy(1)4(t) + [ke(Z(é))Y(Z(é))qt(t)fl(é) dé. (46)

Then, integration gives

Z(t) = Z(t) + Y (Z(1))Q,(t)a(r) — a(1)] + [ ke(Z(£)Y (Z(E)la(r) — a(O)]'a(¢) dg, (47)

i

which is a nonlinear Volterra integral equation for Z.
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6. Homeomorphisms of measures of plastic irreversibility
From Egs. (26), (42), (43), and (24); it follows that
: ke + k) -
pPhth)y (48)
)

and the dissipation power is

A:= Q¢ = gy > 0. (49)

In view of the switch (39), inequalities (17) and (43);, and Eqgs. (42), (48) and (49), it is important to note
that ¢, Y, Z and A are intimately related in the sense that there exists strictly monotonic increasing relation
between any pair of them as shown in Table 1. Therefore, any one of those irreversibility parameters can be
chosen to play the role in the switch (39), the role of an indicator of irreversible change of material
properties, the role of so-called material age, intrinsic time, internal time, the arrow of time, etc., in this
time-independent model. Furthermore, they serve as the measures of plastic irreversibility and are crucially
important in the evolutions of material properties and parameters and also in the determination of re-
sponses as shown in Egs. (27), (28) and (31). Once Z is obtained, the other parameters are readily calculable
through the integrals of the material homeomorphic functions listed in Table 1. Hence, Eq. (47) or Eq. (46)
deserves a further study.

7. Material functions in terms of Z

By Egs. (41) and (44) the irreversibility parameter Z and the equivalent generalized plastic strain ¢ are
closely related, being bijective, invertible, and strictly monotonic. This fact of equivalence can be utilized to
accelerate the calculation of the material responses. For the generalized strain-controlled processes we may
thereby change the dependence of the defined material functions on ¢ to directly on Z, and thus all the
material functions with the arguments g turn to the material functions simply with the arguments Z
through Eq. (44). Even the process listed in the above is available to reveal the function dependence of
0°(2), kp(Z) and so on. But they are not so straightforward. In this section the relationships of the material
functions are further studied from a different point-of-view.

Table 1
Relationships between irreversibility parameters
i Y z A X X
g1 g B 1 [ Bl = 2p,04(0)
0 (ke +kp)Y oY x kY kY [1 = 2p,X0T
v (ke + kp)Y 1 Blke + k) (ke + kp)Y Blke + k) Plke + ky)[1 = 2p,04(0)]
o (00 (@ ke Q) KON — 20,X0)
, QY (@) . b x Q1 20, 03(0)]
B Blke + kp) B . ke[l = 2p, X0
A o )’ B . b B 20,04 (0)]
2 (ke + k)Y Y k.Y kY1 = 2p,X0)
XO keY keQS E keY 1 1 - 2[)0Qg(0)
Cp Blke + ky) o B (1 —2p,X0
o kY- 200X° ke QU1 — 20X kel = 200X kY1 —2poXT [ —2ppX0)

Bl —2py 24(0)]

Blke +kp)[1 = 2py 04(0)]

QA1 — 2p, 3(0)]

BA = 2po03(0)]

1—2p,03(0)

1
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In order to give the dependence of the material functions on Z directly, we combine Eqgs. (45) and (26) to

get
% ke ky
exp[ /0 %dp — v(2). (50)

Derivating both sides with respect to ¢, applying the chain rule on the right-hand side and then using Eq.
(43),, we obtain

B(q) ke (q5) + ko(qp)]

=Y'(2). (51)
((45))°
Similarly, the derivative of Eq. (32) with respect to ¢ and the use of Eq. (43), give
a ke a
ﬁ(qo) (q(z)) — Yz(Z)Cé<Z>. (52)
(Q2(45))
By dividing the above two equations we obtain
a ay __ ke(Z)Y,(Z)
ke(q()) +kp(‘]0) - Yz(Z)Cé(Z>7 (53)

or in terms of Z,
_ Y'(2)
o(2) = 2)| g0 1| (54)

The replacement of f in Eq. (52) by the one in Eq. (35) and the substitution of Eq. (53) into the resultant
yield
2(Z (2)Y'(Z
K@) H><w_ 55)

— 0/ a\\2| V[, a
YZ(Z)CQ(Z) (Qa(qo)) |:Qa (qO) + YZ(Z)CQ(Z)
By the chain rule and the use of Eq. (43), the term Qg/(qg) in the above equation can be written as

Vi — o (o LAL2)
0! a5) = &(2) =5 (56)

Upon using Egs. (53) and (35) it can be arranged to
/ ke(2)Y'(Z
o af) 0)(2) QN (2) 2]
T k(2) - Y(2)00(2) Y (2)

which is then substituted into Eq. (55), giving

(57)

/ ke(2)Y'(Z
K(2) AL (D570 k(Z2)Y(2)

rocz - YNt T d @ T re)ae) (58)

With some algebraic manipulations the following differential equation relating ¥(Z) and (Q(Z))* can be
obtained,

d, .2 2Y(Z), o, ke(Z)
QD) + S Q@ =55 (59)

This equation provides an interesting relation among the three material functions k.(Z), 0°(Z) and Y(Z).
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If Y(Z) and k(Z) are given then the solution of (Q%(Z))* obtained from Eq. (59) is

QO = oy | k¥ )dp+ SO (60)

and, if 0°(Z) and k.(Z) are given then the solution of Y (Z) obtained from Eq. (59) is

L [P kp) 00 .
QU2) Jo A(p) :(2)
C.(Z) is calculated from Eq. (54) by

z ko(p)Y'
0= [ o taim o

and k,(Z) is evaluated by Eq. (54). Similarly,
* Cp)
o ke(p)

is obtained from Eq. (29) by changing the integration variable by means of Egs. (42) and (52).

Eq. (60) provides a functional relation between (YQg)2 and k.Y, and Eq. (61) a functional relation be-
tween YQ? and k./Q°. The above two equations are consistent. Interestingly, the parameter YQ! has already
appeared in several places, for example, Egs. (29), (32), (41)—(43), etc. In Section 9 we will reveal the im-
portance of the parameter YQ! for further understanding of the mixed-hardening plasticity model.

Y(Z) =

dp +

C(Z) =

dp (63)

8. Operators in terms of Z

Once Z is obtained, the material functions Q%(Z) and k,(Z) are specified, and Y(Z) and C.(Z) are
evaluated via Egs. (61) and (62) (or Y(Z) and C.(Z) are specified, and Q°(Z) and k,(Z) are evaluated via
Egs. (60) and (54)), Q,(¢) and Q(¢) can be calculated respectively by

Q0 =5 [Y(Z(ti))Qa(ti) +f (2@ @A) df], (64)
Q) = Q) +6'(200) 2(1)) ~ 620, 2] ok + [ G (200, 2()i(&) de (65)
1 ) 1 1/ 1 ke(Z(tl)) tl ) bl
where
G (Z1,2s) = ke(2){1 = Y(£)[Ce(Z1) — Ce(22)]}- (66)

Similarly, the generalized plastic strain is calculated by
GP(Z(1),Z(x))

O = 7))

Q)+ [ @02 de (67)

where
G*(Z1,2,) = ke(22)Y(2,)[C(Z)) — C(Z2)]. (68)

A numerical procedure based on the discretizations of Egs. (47), (64), (65) and (67) can be developed to
calculate the responses of mixed-hardening elastoplastic model under general loading conditions. However,
this important computational issue is reported by Liu (submitted for publication) in other place.
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9. Augmented differential equations system

From Egs. (46) and (64) we have '

Z=Y(2)Q4, (69)
and from Egs. (295), (26), (44) and (45) we have

d .

V(D] = k(2)Y(2)4, (70)

which can be rearranged to

d
di

oz~
On the other hand, multiplying Eq. (61) by O on both sides, taking the time derivative and then using Eq.
(69) we obtain

d 0 —
Y 2)2(2)] =1(2)

Y(2)Q) =Y(2)0)(2) (71)

Q.4 (72)

Let us introduce

.6 YQ,
%= [5] - [18] .
as the augmented (7 + 1)-dimensional state vector, > where X? is another irreversible parameter, and Table
1 shows its relations with the other irreversible parameters. Correspondingly, X := YQ, is the spatial part

of X, in the Minkowski spacetime, and we may call it the augmented generalized active stress. Moreover,
from Egs. (39), (72) and (73) it follows that

0 . . .
XO _ (]ZE)(;Z Q;q > 0 1f ||Qd|| = Qg and Q;q > Oa (74)
"o if Qull < Q) or Qug<0.  [OFF
Thus, Egs. (71) and (72) can be combined together as following equations system:
X, = AX,, (75)
where
e ke Onxn q
am k[0 4], 7
Define the proper time 7 as follows:
k " k()
dr == dr, ‘L'Z‘Ei-‘r/ S22 dé, 77
0 . O 77

! Because Y(Z)Q, is the augmented generalized active stress, we may correspondingly call Z the augmented generalized active
power.

% From Egs. (73) and (61) we have X? = k.Z/Q" > 0 in the on phase, and thus X? is a time-like parameter which can be viewed as
the temporal component of X, in the Minkowski spacetime.
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where ¢ is an initial time and 7; is the corresponding initial proper time. Since the term k./Q° in Eq. (76) is
positive, the proper time 7 is a monotonic function of the external time ¢. The on-off switching criteria in Eq.
(74) can thus be written as

Ay [5Qla>0 if Q. = 0} and Qi >0, (78)

dr o if Q] < Of or Qug<0.  [OFF
In terms of the new time scale 7, Eq. (75) becomes

d

—X, = BX

d‘[; a asy (79)
where

|0 q
b [0 4] w0

It can be seen that in this augmented space X, = (YQ!, YQ°)', the governing equations become linear
with respect to T and are more tractable than the original nonlinear equations.

From Egs. (79) and (80) a deeper understanding of the underlying structure of the model may be
achieved as to be done in Sections 10-12.

10. The Minkowski spacetime

In Section 9 we found that even the constitutive equations are nonlinear in the n-dimensional state space
of generalized active stresses Q,, but they can be transformed to linear differential equations in the (n + 1)-
dimensional augmented state space of X, through a time scaling. In the augmented space not only the
nonlinearity of the model is unfolded, but also an intrinsic spacetime structure of the Minkowskian type
will be brought out.

Now we translate the mixed-hardening elastoplastic model postulated in Section 1 in the state space of
Q, to one in the augmented state space of X,. Accordingly the first row in Eq. (79), and Egs. (18), (16) and
(17) become

In Onxl an o 0n><n q
|:01><n X;gxa] dz - |:01><n 0 Xaa (81)
X;gxa <0, (82)
dX()

= =0, 83
dr (83)

in terms of the Minkowski metric (in the space-like convention)

— In 0n><1

£~ |:01><n -1 :| ’ (84)

where I, is the identity matrix of order n. The vector space of augmented states X, endowed with the
Minkowski metric tensor g is referred to as Minkowski spacetime, and designated as M"*'.
Regarding Egs. (16) and (82), we further distinguish two correspondences:

1Qull = 02 <= XgX, =0, (85)
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Q. < 02 <= XgX, <0. (86)

That is, a generalized active stress state Q, on (resp. within) the yield hypersphere [|Q,| = 0° in the
generalized active stress space of (Q,...,0Q") corresponds to an augmented state X, on the cone
{X.|X!gX, =0} of Minkowski spacetime (resp. in the interior {X,|X;gX, < 0} of the cone). The exterior
{X.|X!gX, > 0} of the cone is uninhabitable since [|Q,|| > QU is forbidden. Even though it admits an in-
finite number of Riemannian metrics, the yield hypersphere S"' of Q, does not admit a Minkowskian
metric, nor does the space of (Q}, ). It is the cone of X, which admits the Minkowski metric.

From Egs. (34), (73) and (84) it follows that

1Qull = 01 = Xig(d', 45/B)' = 0. (87)
Moreover, by Egs. (73), (78)1, (79) and (84) we can prove that

. dX,
{1 = & and Qi > 0} = Xig " * =

If the model is in the on phase (i.e., not only ||Q,|| = Q° but also Q:q > 0), then from Egs. (85), (87) and
(88) we assert that for an X,-path on the cone, the augmented state X, is M-orthogonal to itself, its tangent
vector dX,/dt and also its dual (q', ¢3/f). The so called M-orthogonality is an orthogonality of two (n + 1)-
vectors with respect to metric (84) in Minkowski spacetime M"*! (see, e.g., Das, 1993 and Naber, 1992).

On the other hand, X is frozen in the off phase as indicated by Eq. (78), and the augmented state X,
stays in the closed n-disc D" (i.e., closed n-ball B") on the hyperplane X! = constant in the space of
(X}, ..., X" X0, the hyperplane being identified to be Euclidean n-space E", which is endowed with the
Euclidean metric I,,. In summary, the augmented state X, either evolves on the cone when in the on phase or
stays in the discs of simultaneity, which are stacked up one by one in the interior of the cone and are glued
to the cone, when in the off phase.

0. (88)

11. Space-like paths in the Minkowski spacetime

The criteria in Eq. (39) ensure that
451Q.Q. — A10) 451 =0 (89)

no matter whether in the on or in the off phase. Substituting Egs. (11)-(15) into the above equation and
using Eq. (23), we obtain

pi'd® = (°)'q" > 0. (90)
Materials which satisfy such an inequality q'q® > 0 are said to be kinematically stable, e.g., Lubliner (1984).
Using Eq. (23) and the above equation we obtain

9 = v Ba'q- o1

Squaring of the above equation and using Egs. (17) and (14), we get

a2 PQud

a2 _ o PRl 92

(45) 99 o (92)
by which we have

a2 _ P4 :

Q;
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and using Eq. (18) the bound of ¢ can be derived,
go < Blldll (94)

no matter in the on or off phase. This inequality tells us that the maximum value of the specific dissipation
power A = 0% an admissible path in the state space may discharge is fQ°||q||. (On the other hand,
postulation (17) tells us that the minimum value of the specific dissipation power an admissible path may
discharge is zero.)

The solution of Eq. (79) may be viewed as a path in M"*!, which traces along the null cone XigX, =0
given by Eq. (85). From which the derivative gives

XigdX, = 0. (95)
Thus X, is M-orthogonal to dX,. Furthermore, upon using this equation and X! gX, = 0 we have

n 1 n n

zymr4uwza§5§xm§3uy—(iaug . (96)

a i=1 i=1
So that by utilizing the Schwartz inequality we obtain
(dX,)” := (dX,)'gdX, = 0. (97)

Recalling that a path such that (dX,)'gdX, > 0 (resp. = 0, < 0) is called a space-like (resp. null, time-
like) path in M"™!, we thereby conclude that the path X,(7'), 7y < ¥ <7, in the augmented state space is a
space-like or null path in the Minkowski spacetime M"*! no matter in the on or in the off phase. Indeed, Eq.
(97) conveys a message that the nature of mixed-hardening elastoplasticity rejects time-like paths, so that
the time-like metric convention has to be rejected to avoid an unreasonable negative squared length. This is
the reason why we have adopted the space-like convention (84) for mixed-hardening elastoplasticity.

12. The proper orthochronous Lorentz group

In this section we concentrate on the on phase to bring out internal symmetry inherent in the model in
the on phase. Denote by /,, an open, maximal, continuous proper time interval during which the mech-
anism of plasticity is on exclusively. The solution of the augmented state equation (79) can be expressed as
in the following augmented state transition formula:

X‘d(r) = [G(T)Gil(rl)]xa(‘[l% v 7,71 € Iorn (98)
in which G(t), called the fundamental matrix of Eq. (79), is a square matrix of order n + 1 satisfying

2 6(0) = BOG() %9)

dt

G(0) = L.t (100)

On the other hand, from Egs. (80) and (84) it is easy to verify that the control matrix B in the on phase
satisfies

B'g +¢gB = 0. (101)
By Egs. (101) and (99) we find

S 6 @6 =0,
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From Egq. (100) we have G'(1)gG(1) =L, ,gl,.; = g at t = 0, and thus prove that

G'(1)gG(r) = g (102)
for all © € I,,,. Take determinants of both sides of the above equation, getting

(det G)* =1, (103)
so that G is invertible. The 00 entry of the matrix equation (102) is Z;’ZI(G{))Z - (G8)2 = —1, from which

(G’ = 1. (104)
Here G;., i,j=1,...,n,0,is the mixed ij-entry of the matrix G. Since det G = —1 or G < — 1 would violate
Eq. (100), it turns out that

det G =1, (105)

GO > 1. (106)

In summary, G has the three characteristic properties explicitly expressed by Egs. (102), (105) and (106).
Recall that the complete homogeneous Lorentz group O(n, 1) is the group of all invertible linear
transformations in Minkowski spacetime which leave the Minkowski metric invariant, and that the proper
orthochronous Lorentz group SO,(n, 1) is a subgroup of O(xn, 1) in which the transformations are proper
(i.e., orientation preserving, namely the determinants of the transformations being +1) and orthochronous
(i.e., time-orientation preserving, namely the 00 entry of the matrix representations of the transformations
being positive) (see, e.g., Cornwell, 1984). Hence, in view of the three characteristic properties we conclude
that the fundamental matrix G belongs to the proper orthochronous Lorentz group SO,(n,1). So the
matrix function G(t) of proper time t € [, may be viewed as a connected path of the Lorentz group.
Furthermore, by Eq. (101), B is an element of the real Lie algebra so(n, 1) of the Lorentz group SO, (n, 1).
From Eq. (78);, dX?/dt > 0 strictly when the mechanism of plasticity is on; hence,

Xf(r) > Xf(fl) >X£(ro) =0 VT>1>1, 1,71 € L, (107)

a’

which means that in the sense of irreversibility there exists future-pointing proper time-orientation from the
augmented states X,(71) to X,(7). Moreover, such time-orientation is a causal one, because the augmented
state transition formula (98) and inequality (107) establish a causality relation between the two augmented
states X,(7;) and X,(z) in the sense that the preceding augmented state X,(z;) influences the following
augmented state X, (t) according to formula (98). Accordingly, the augmented state X, (t;) chronologically
and causally precedes the augmented state X, (7). This is indeed a common property for all models with
inherent symmetry of the proper orthochronous Lorentz group. By this symmetry a core connection among
irreversibility, the time arrow of evolution, and causality has thus been established for plasticity in the on
phase.

13. The Poincaré group

The proper orthochronous Lorentz group SO,(n, 1) constructed in the above is acting on the space X,;
and what is the effect of the kinematic hardening on the group structure? In order to reply this question we

? From Egs. (17), (26) and (73) it follows that X?(7) = X0(¢') = X2(t;) = X2(z0) = Q0 forall T > ¢’ > 1; > 19, applicable to both the
on and off phases. Recall that 7y is the zero-value proper time at which all relevant values including ¢§(zo) = 0.
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return to the derivation of Eq. (31) as follows. First, from Egs. (15), (14) and (27), the generalized back
stress is integrated as follows:

Qo) = Quln) + PEALN Q1) + [ 6 (a3 446 o (108)
where

Co(qp) = /0 i %dp’ (109)

Gy (p1.p2) = ke(p2)Y (p2) [Co(p1) — Gy (p2)]- (110)
Both C, and Gy are material functions. In terms of

Gulpr ) =20, )
it can be verified from Eqgs. (26), (32), (33), (110) and (109) that

G (pr,p2) = ke(p){1 = Y(22)[Ce(p1) = Ce(p2)]} = Galpr,p2) + Go(p1, p2). (112)

Combining Egs. (27) and (108) and noting Eqs. (12) and (112) yield Eq. (31) again. Equation (108) is an
integral representation expressing the generalized back stress in terms of the generalized strain rate history.
Now, introduce the space X with the following vector decomposition:

x:xa+xb:=[§gg}+[%b]. (113)

The group acting on the space X is the semi-direct product of the translation T,.; and the proper ortho-
chronous Lorentz group SO,(n, 1); usually such group is named the Poincaré group ISO,(n, 1), or inho-
mogeneous Lorentz group (see, e.g., Kim and Noz, 1986).

14. Conformal spacetime

From Egs. (11)—(13), (15) and (91) we have

(d0,)" = [[dQ,|I* = &Z[|dq||”* — (ke + ky) [ke + ky + 207 1(dg5)’, (114)
which, with the aid of Egs. (71)—(73), (39), (84) and (97), leads to
(dx,)* = Y?[(d0.)” — (2])*(dgj)’] (115)

no matter in the on or in the off phase. Especially, in the on phase we have Q, - dQ, = 0°0"dg¢ by the
plastic consistency condition, and for the nonperfect case, i.e., 07 # 0, we have

2

Xm2zy2 daZ_(Qa'an)‘|zy2 0’2[ 1 d'lZ_daZ. 116

(dX,) 1dQ,|| oy (Q:) —(Qg,)z( 0.)" — (dg5) (116)
The metric line element (dQ,)*/ (Qg)2 - (dqg)2 defined in the space (Q!,¢¢) indicates that the spatial sec-
tions expand (or contract) uniformly as described by the scalar function Q¥ (¢4). This form of the metric line
element is manifestly conformal to the Minkowski space X, with a conformal scalar factor Y (g§). The space
(Q!,q4) is known as a Robertson-Walker spacetime (see, e.g., Hawking and Ellis, 1973 and Birrell and
Davies, 1982).
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In this occasion we would like to point out that the metric considered by De Saxce and Hung (1985),
who attempted to study plasticity models from a differential geometry view, is not a suitable one. Really, by
identifying (Q°)° = 26?/3, dA = Q%dg¢ = di’ and dg? = dk* with the notations used by De Saxce and
Hung, we readily obtain

_@
3

from the flow rule (14). See also Eq. (5.2) proposed by De Saxce and Hung, loc.cit. The above metric
vanishes no matter whether in the on or in the off phase. In this sense such metric is not a suitable measure
for its full degeneracy. More precisely, it is not a metric and also not a hyperbolic metric. So, De Saxce and
Hung asserting it as a hyperbolic metric on the base manifold is incorrect. Indeed, do® = 0 is at most an
identity derived from the associated flow rule.

Eq. (75) is the governing equation of X, = (YQ,, YQg)l; and from Egs. (71), (72), (26), (77) and (39) the
governing equation of (Q,, 0?) is read as

d Q1:| ke |:0>< q:l |:Qa:| ﬁ(ke+kp) te Q
— | == ——Q.q| 55 |- 117
al8=g e 0[] My o
However, (Q!, Qg)‘ is not a suitable spacetime structure, since d0° may be negative in the softening range of
modeled material.

In order to obtain a suitable conformal spacetime structure, we introduce a scaling factor function p(gf)
and consider the following augmented vector:

do® = (d°)? 8 dic* dicP

X a

«-[3]-[3)
in which we need d(pQ°) > 0 in the on phase, and simultaneously the cone is preserved, i.e.,

(X.)'gX, = 0. (119)
Taking the time derivative of Eq. (118) and using (117) we obtain

d [pQ } P[pQ } ke {ON qan } Pk + k) 1[pQ }

- a | aj g al — 2. 120

ai [pQS AR AR I R s (120)
If p satisfies

p_ ke [ﬁ(keJrkp) } ‘o

= 200 QA 121

P AL Pk ’ 120

where p, is a constant whose range to be determined below, then in the space X, the governing equations
are given by

d [pQ ke [0, 4| pQ 2kepy i | PQ

da a| _ K | Onn a| _ a| 122

dr {pQQ’} o8 [ R R Y (122
By using the proper time t defined in Eq. (77) the above equations are further refined to

d [ pQ, 0... q|prQ, . | PQ,

— Sl=1"" 51 —2 51 12

I R [ R X (129

The above differential equations system is one of the conformal type, e.g., Anderson et al. (1982), with the
(n + 1)-dimensional conformal parameters (p,q,0). The group generated from the above differential
equations system is a special type of conformal group.
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Eq. (121), after substituting p = p’¢4 and Eq. (39), for Q.q = 0°§%/B and cancelling ¢4’s on both sides,
can be changed to the following Riccati differential equation:

r_ ke +kp o 2kep0 p2

p 124
o’ 12y
Using Eq. (26) the solution of p is found to be
Y(q5)
o(qs) = - . (125)
0 1+ 2p, (;10 ke(ﬁi]{)(ﬂ) dp
On the other hand, from Eqgs. (61) and (42) we have
d(¥@®) ke . kY,
al _ 27 250 126
ATEy L A U (126)
in the on phase, such that the integral in Eq. (125) can be obtained explicitly,
Y (q5)
p(q5) = - . 127
) = T 25,0000 + 200V (@)001e5) 127

When p, = 0 we have p = Y, and the differential equations system (79) is recovered from Eq. (123). We also
note that p, can not be a negative constant value; otherwise, the above p will blow-up when Y increases to a
certain positive value.

From Eq. (127) the relation of X, and X, through Egs. (73) and (118) is available,

1
X, = X..
1= 2p,02(0) + 2pp X7

Furthermore, the metrics in both the spaces X, and X, can be proved to be related conformally as follows:

(128)

072

(dAQ)z::T%%fiéfgg%éﬁf(djg>2::[1-2p0g£<;>+—2p&X£f(dAQ)2’ 122
where

(dX.)* = (dX.)'gdX.. (130)
Finally, from Eq. (128) it is easy to prove that

X0 — [1- ZPOQg(O)] X0 — [1- 2P0Xc0]2 X0 (131)

© 1= 2p000(0) + 20X 1= 2p000(0) "
For the purpose of X? > 0 to be an irreversible parameter as well, i.e., Xf’ > 0, by Egs. (126) and (73) we
require 1 —2p,0%(0) > 0, that is,

0<py < (132)

1
200(0)°
Thus, under this condition we have introduced another irreversible parameter X as the temporal com-
ponent of the conformal spacetime, the relations of which to the other irreversible parameters are listed in
Table 1. It includes two dimensionless irreversible parameters ¢ and Y, and also four stress dimension
irreversible parameters Z, A, X and X_.

The hyperbolic geometric models that we studied for the mixed-hardening elastoplasticity are gov-
erned by the conformally isormorphic spacetimes. They are all differentiable manifold endowed with a
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pseudo-Riemann metric, which assigns at each spacetime point X, an indefinite symmetric inner product on
the tangent space, which varying differentiably with X..

15. Conclusions

In this paper we have established two types formulations for mixed-hardening elastoplastic model of the
generalized stress and generalized strain: the flow model characterized by Eqs. (11)—(18) and the two-phase
linear differential system characterized by Eqgs. (79) and (80). Even though the governing equations of the
generalized active stress are nonlinear in the n-dimensional space Q, we have found that it can be trans-
formed to linear differential equations in the augmented (n + 1)-dimensional space X,. In this space not
only the nonlinearity of the model can be unfolded, but also an intrinsic spacetime structure of the
Minkowskian type can be revealed, merely replacing the inequality in space Q, to the inequality in the
augmented space X,. We also pointed out that the state matrix B is an element of the Lie algebra of
the proper orthochronous Lorentz group, hence the state transition matrix generated from the linear dif-
ferential equations was proved to be a type of the proper orthochronous Lorentz group. In the frame of the
Minkowski spacetime we have further proved that the action of the kinematic rule in the mixed-hardening
model causes a translation of the state X, which amounts to extend the proper orthochronous Lorentz
group to the proper orthochronous Poincaré group.

We have introduced a conformal factor p in Eq. (127) and thus a conformal spacetime X, is derived. The
analytic models of hyperbolic geometry that we studied for the mixed-hardening elastoplasticity are gov-
erned by the conformally isormorphic spacetimes. They are all differentiable manifold endowed with a
pseudo-Riemann metric, which assigns at each spacetime point an indefinite symmetric inner product on
the tangent space, which varying differentiably. Mathematically speaking, the pseudo-Riemannian mani-
fold is a suitable underlying spacetime model for the mixed-hardening elastoplasticity.

Even we dealt only with mixed-hardening effect on the elastoplastic model without considering a more
inclusive Armstrong-Frederick kinematic hardening rule, 4 and/or large deformation, etc.; however, we
may further consider more sophisticated group actions on pseudo-Riemannian manifolds and thus makes
an explicit use of the powerful group-theoretic method to study plasticity from a global view. In this regard,
the present paper may open the way to plasticity research in a new direction.
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