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Abstract

The constitutive postulations for mixed-hardening elastoplasticity are selected. Several homeomorphisms of irre-

versibility parameters are derived, among which X 0
a and X 0

c play respectively the roles of temporal components of the

Minkowski and conformal spacetimes. An augmented vector Xa :¼ ðYQt
a; YQ

0
aÞ

t
is constructed, whose governing

equations in the plastic phase are found to be a linear system with a suitable rescaling proper time. The underlying

structure of mixed-hardening elastoplasticity is a Minkowski spacetime Mnþ1 on which the proper orthochronous Lo-

rentz group SOoðn; 1Þ left acts. Then, constructed is a Poincar�ee group ISOoðn; 1Þ on space X :¼ Xa þ Xb, of which Xb

reflects the kinematic hardening rule in the model. We also find that the space ðQt
a; q

a
0Þ is a Robertson–Walker spacetime,

which is conformal to Xa through a factor Y , and conformal to Xc :¼ ðqQt
a; qQ

0
aÞ

t
through a factor q as given by

qðqa0Þ ¼ Y ðqa0Þ=½1� 2q0Q
0
að0Þ þ 2q0Y ðqa0ÞQ0

aðqa0Þ�. In the conformal spacetime the internal symmetry is a conformal group.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The formulation of yield criteria of Tresca and of von Mises was the first key step in developing plasticity

theory. However, without a plastic stress-strain relation, the criteria can do little. The incremental stress-

strain relations proposed by Saint-Venant and L�eevy represented a giant step forward in plasticity theory.

Since then the incremental or rate type point-of-view has been most frequently taken in formulating

constitutive equations of plasticity, which describe the evolutions of internal state variables. This kind of
rate-equation representations is now composed of separately specified but interwoven ingredients, including

the elastic part, yield condition, loading-unloading criterion, plastic flow rule, isotropic hardening rule and

kinematic hardening rule, etc.

Because of the nonlinear nature of the model ingredients in plasticity, there seems necessary although

difficult by composing all ingredients together to derive a global theory of plasticity, which not only gives
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directly a local response of the material in the time domain once an input is prescribed, but also facilitates

us to handle model property from a global view. To do this several thresholds need to be stridden across.

The first is integrating the rate-type equations, which consist of separated but interwoven ingredients

specified on a high-dimensional space such as states in stress space and paths in plastic strain space and
their product space. The second is solving the irreversibility parameters, such as the equivalent plastic

strain, dissipation, and so on, and in general there exist monotonic mappings between these parameters.

The third as to be strongly emphasized here is studying symmetry properties of the model and its intrinsic

spacetime structures.

The differential nature of plasticity laws has been discussed for a long time. The invariant yield condition

in stress space renders a natural mathematical frame of plasticity theory from the view of differentiable

manifold and its Lie group transformation. In this paper we are going to make an effort to study the in-

ternal symmetry groups and the underlying spacetime structures for mixed-hardening elastoplasticity. The
Lie group theory provides a universal tool for tackling considerable numbers of differential equations when

other means fail. Indeed, group analyses may augment intuition in understanding and in using symmetry

for formulation of physical models, and often disclose possible approaches to solving complex problems.

Recently, Hong and Liu (1999a,b, 2000) have considered constitutive models of perfect elastoplas-

ticity with and without considering large deformation and of bilinear elastoplasticity, revealing that the

models possess two kinds of internal symmetries, characterized by the translation group T ðnÞ in the off (or

elastic) phase and by the projective proper orthochronous Lorentz group PSOoðn; 1Þ in the on (or elas-

toplastic) phase for the first two models and the proper orthochronous Poincar�ee group PISOoðn; 1Þ in the
on phase for the bilinear model, and have symmetry switching between the two groups dictated by the

control input. Moreover, Liu (2001, 2002) applied a PDSOoðn; 1Þ symmetry to formulate a mathematical

model of visco-elastoplasticity, and then Liu (submitted for publication) employed a two-component spinor

representation to unify finite strain elastic-perfectly plastic models with different objective stress rates and

showed that the Lie symmetry in the two-dimensional spinor space is SLð2;HÞ with H denoting the qua-

ternionic number. In this paper some of those results are extended to the model of mixed-hardening

elastoplasticity, investigating the influence of nonlinear hardening parameters on the structure of the un-

derlying vector spaces and on the transformation groups of internal symmetries.

2. Constitutive postulations

In terms of five-dimensional stress vectors and five-dimensional strain vectors:

Q ¼

a1s11 þ a2s22

a3s11 þ a4s22

s23

s13

s12

2
66664

3
77775; Qa ¼

a1s11a þ a2s22a
a3s11a þ a4s22a

s23a
s13a
s12a

2
66664

3
77775; Qb ¼

a1s11b þ a2s22b
a3s11b þ a4s22b

s23b
s13b
s12b

2
66664

3
77775; ð1Þ

q ¼

a1e11 þ a2e22
a3e11 þ a4e22

e23
e13
e12

2
66664

3
77775; qe ¼

a1ee11 þ a2ee22
a3ee11 þ a4ee22

ee23
ee13
ee12

2
66664

3
77775; qp ¼

a1e
p
11 þ a2e

p
22

a3e
p
11 þ a4e

p
22

ep23
ep13
ep12

2
66664

3
77775; ð2Þ

the tensorial form of elastoplastic model with mixed-hardening rule, e.g., Hong and Liu (1993):

_ee ¼ _eee þ _eep; ð3Þ
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s ¼ sa þ sb; ð4Þ

_ss ¼ 2G _eee; ð5Þ

_kksa ¼ 2s0y _ee
p; ð6Þ

_ssb ¼ 2k0 _eep; ð7Þ

ksak6
ffiffiffi
2

p
s0y ; ð8Þ

_kkP 0; ð9Þ

ksak _kk ¼
ffiffiffi
2

p
s0y

_kk; ð10Þ

can be equivalently re-expressed by the following vectorial form:

_qq ¼ _qqe þ _qqp; ð11Þ

Q ¼ Qa þQb; ð12Þ

_QQ ¼ ke _qqe; ð13Þ

Qa _qq
a
0 ¼ Q0

a
_qqp; ð14Þ

_QQb ¼ kp _qqp; ð15Þ

kQak6Q0
a; ð16Þ

_qqa0 P 0; ð17Þ

kQak _qqa0 ¼ Q0
a _qq

a
0: ð18Þ

In Eqs. (1) and (2),

a1 :¼ sin h
�

þ p
3

	
; a2 :¼ sin h; a3 :¼ cos h

�
þ p

3

	
; a4 :¼ cos h; ð19Þ

where h can be any real number. If choosing h ¼ 0 we have the stress space Q :¼ ð
ffiffiffi
3

p
s11=2; s11=2þ s22;

s23; s13; s12Þt of Il�yushin (1963). Throughout this paper, a superscript t indicates the transpose, and a su-

perimposed dot denotes a differentiation with respect to time.

In the tensorial representation of elastoplastic model with Prager�s kinematic hardening rule combined

with isotropic hardening rule as shown by Eqs. (3)–(10), e, ee, ep, s, sa and sb are, respectively, the deviatoric

tensors of strain, elastic strain, plastic strain, stress, active stress and back stress, all symmetric and
traceless, whereas k is a scalar evaluated by

kðtÞ ¼
Z t

0

ffiffiffi
2

p
k _eepðnÞkdn; ð20Þ

where k _eepk :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
_eep � _eep

p
defines the Euclidean norm of _eep and a dot between two tensors stands for their inner

product. From Eqs. (1) and (2) it follows that

ksak2 ¼ 2kQak2; sa � _ee ¼ 2Qt
a
_qq: ð21Þ
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The material functions and plastic multipliers in the above two equivalent representations have the fol-

lowing relations:

ke ¼ 2G; kp ¼ 2k0; Q0
a ¼ s0y ; 2 _qqa0 ¼ _kk: ð22Þ

The norm of an n-vector Q is defined as kQk :¼
ffiffiffiffiffiffiffiffiffiffi
QtQ

p
. Depending on the number of nonzero stress

components in Eq. (1) (and correspondingly nonzero strain components in Eq. (2)) which we consider for a

physical problem, for example, the axial tension-compression problem, the biaxial tension-compression-

torsion problem, etc., the dimension n may be an integer with 16 n6 5, and no matter which case is we use

n to denote the physical problem dimension. The bold-faced letters q, qe, qp, Q, Qa and Qb are, respectively,
the n-vectors of generalized strain, generalized elastic strain, generalized plastic strain, generalized stress,

generalized active stress and generalized back stress, whereas qa0 is a scalar. All q, qe, qp, Qa, Qb, Q and qa0
are functions of one and the same independent variable, which in most cases is taken either as the usual time

or as the arc length of the controlled generalized strain path; however, for convenience, the independent

variable no matter what it is will be simply called ‘‘time’’ and given the notation t. The generalized elastic

modulus ke > 0, generalized kinematic modulus kp, and the generalized yield strength Q0
a > 0 are the only

three property functions needed in the model, and are functions of the equivalent generalized plastic strain

qa0, which by Eqs. (14), (17) and (18) and Q0
a > 0 is found to be

qa0 ¼
Z t

0

_qqa0ðnÞdn ¼
Z t

0

k _qqpðnÞkdn: ð23Þ

The material is further assumed to be weakly stable (Hong and Liu, 1993):

ke þ kp þ Q00

a > 0; ke þ kp > 0: ð24Þ

Here a prime denotes the derivative of a function with respect to its argument, for example,
Q00

a :¼ dQ0
aðqa0Þ=dqa0.

3. Response operators

From Eqs. (11)–(15) it follows that

_QQa þ
ke þ kp
Q0

a

_qqa0Qa ¼ ke _qq; ð25Þ

which, in terms of the integrating factor

Y ðqa0Þ :¼ exp

Z qa
0

0

keðpÞ þ kpðpÞ
Q0

aðpÞ
dp

� 

; ð26Þ

can be integrated to

QaðtÞ ¼
1

Y ðqa0ðtÞÞ
Y ðqa0ðtiÞÞQaðtiÞ
�

þ
Z t

ti

keðqa0ðnÞÞY ðqa0ðnÞÞ _qqðnÞdn



: ð27Þ

Upon substituting Eq. (27) for Qa into Eq. (14) and integrating the resultant, we obtain

qpðtÞ ¼ qpðtiÞ þ
Gpðqa0ðtÞ; qa0ðtiÞÞ

keðqa0ðtiÞÞ
QaðtiÞ þ

Z t

ti

Gpðqa0ðtÞ; qa0ðnÞÞ _qqðnÞdn; ð28Þ
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where

Cðqa0Þ :¼
Z qa

0

0

1

Y ðpÞQ0
aðpÞ

dp; ð29Þ

Gpðp1; p2Þ :¼ keðp2ÞY ðp2Þ Cðp1Þ½ � Cðp2Þ�: ð30Þ
Integrating Eq. (13) after replaced its _qqe by _qq� _qqp due to Eq. (11), _qqp by the flow rule (14) and Qa by Eq.

(27), we obtain

QðtÞ ¼ QðtiÞ þ Gsðqa0ðtÞ; qa0ðtiÞÞ
�

� Gsðqa0ðtiÞ; qa0ðtiÞÞ
� QaðtiÞ
keðqa0ðtiÞÞ

þ
Z t

ti

Gsðqa0ðtÞ; qa0ðnÞÞ _qqðnÞdn; ð31Þ

where

Ceðqa0Þ :¼
Z qa

0

0

keðpÞ
Y ðpÞQ0

aðpÞ
dp; ð32Þ

Gsðp1; p2Þ :¼ keðp2Þ 1f � Y ðp2Þ Ceðp1Þ½ � Ceðp2Þ�g: ð33Þ
Up to now three integral operators (27), (28) and (31) are established which map respectively generalized

strain rate histories into generalized active stress histories, generalized plastic strain histories and gener-

alized stress histories. Here t is the (current) time and ti is an initial time, at which initial conditions QaðtiÞ,
qpðtiÞ, QðtiÞ and qa0ðtiÞ should be prescribed. Obviously, the expressions in Eqs. (27), (28) and (31) that the

responses are in terms of the generalized strain rate history is useful only if the history of qa0 is already

known. Thus qa0 deserves a more study, as will be pursued in the following two sections.

4. Switch of plastic irreversibility

The complementary trios (16)–(18) enable the model to possess a switch of plastic irreversibility, the

criteria for which are derived right below.

Taking the inner product of Eq. (25) with Qa, we get

bQt
a
_qq ¼ Q0

a _qq
a
0 if kQak ¼ Q0

a; ð34Þ

where

b :¼ ke
ke þ kp þ Q00

a

> 0 ð35Þ

is a material function. Since b > 0 and Q0
a > 0, Eq. (34) assures that

if kQak ¼ Q0
a then Qt

a
_qq > 0 () _qqa0 > 0: ð36Þ

Hence,

fkQak ¼ Q0
a and Qt

a
_qq > 0g ) _qqa0 > 0: ð37Þ

On the other hand, if _qqa0 > 0, Eq. (18) assures kQak ¼ Q0
a, which together with Eq. (36) asserts that

_qqa0 > 0 ) fkQak ¼ Q0
a and Qt

a
_qq > 0g: ð38Þ

Therefore, from Eqs. (37) and (38) we conclude that the yield condition kQak ¼ Q0
a and the straining

condition Qt
a
_qq > 0 are sufficient and necessary for plastic irreversibility _qqa0 > 0.
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Considering this and the inequality (17), we thus reveal the following criteria of plastic irreversibility:

_qqa0 ¼
b
Q0
a
Qt

a
_qq > 0 if kQak ¼ Q0

a and Qt
a
_qq > 0;

0 if kQak < Q0
a or Qt

a
_qq6 0:

(
ð39Þ

In the phase of the switch, _qqa0 > 0, the mechanism of plastic irreversibility is working and the material

exhibits elastoplastic behavior, while in the phase of the switch, _qqa0 ¼ 0, the material behavior is

reversible and elastic. According to the complementary trios (16)–(18), there are just two phases: _qqa0 > 0

and kQak ¼ Q0
a, and _qqa0 ¼ 0 and kQak6Q0

a. From the switch (39) it is clear that corresponds to the

phase whereas to the phase.

5. Measure of plastic irreversibility

The switch (39) together with the relation (26) reveals the core importance of qa0 and Y in the whole

model; we now go further to investigate their evolutions. Substitution of Eq. (27) into Eq. (34) and re-

arrangement yield

1

b
YQ0

a _qq
a
0 ¼ Y ðqa0ðtiÞÞQ

t
aðtiÞ _qqðtÞ þ

Z t

ti

keðqa0ðnÞÞY ðqa0ðnÞÞ _qqtðtÞ _qqðnÞdn: ð40Þ

Let

Zðqa0Þ :¼
Z qa

0

0

Y ðpÞQ0
aðpÞ

bðpÞ dp; ð41Þ

such that

_ZZ ¼ Z 0 _qqa0 ¼
YQ0

a

b
_qqa0: ð42Þ

From the inequality (17) and Q0
a > 0, b > 0, and Y > 0 in view of the definition (26), we have

_ZZ P 0; Z 0 ¼ YQ0
a

b
> 0; ð43Þ

which ensures the invertibility of the material function Zðqa0Þ. Hence,

qa0 ¼ qa0ðZÞ ð44Þ
is available, and all the material functions that originally expressed in terms of qa0 can be re-expressed in

terms of Z. However, for saving notations we use the same symbols to denote such new functions, for
example,

Y ðZÞ :¼ Y ðqa0ðZÞÞ: ð45Þ
Substituting Eqs. (42) and (44) into Eq. (40), we obtain

_ZZðtÞ ¼ Y ðZðtiÞÞQt
aðtiÞ _qqðtÞ þ

Z t

ti

keðZðnÞÞY ðZðnÞÞ _qqtðtÞ _qqðnÞdn: ð46Þ

Then, integration gives

ZðtÞ ¼ ZðtiÞ þ Y ðZðtiÞÞQt
aðtiÞ½qðtÞ � qðtiÞ� þ

Z t

ti

keðZðnÞÞY ðZðnÞÞ½qðtÞ � qðnÞ�t _qqðnÞdn; ð47Þ

which is a nonlinear Volterra integral equation for Z.
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6. Homeomorphisms of measures of plastic irreversibility

From Eqs. (26), (42), (43)1 and (24)2 it follows that

_YY ¼ bðke þ kpÞ
ðQ0

aÞ
2

_ZZ P 0; ð48Þ

and the dissipation power is

_KK :¼ Qt
a
_qqp ¼ Q0

a _qq
a
0 P 0: ð49Þ

In view of the switch (39), inequalities (17) and (43)1, and Eqs. (42), (48) and (49), it is important to note

that qa0, Y , Z and K are intimately related in the sense that there exists strictly monotonic increasing relation
between any pair of them as shown in Table 1. Therefore, any one of those irreversibility parameters can be

chosen to play the role in the switch (39), the role of an indicator of irreversible change of material

properties, the role of so-called material age, intrinsic time, internal time, the arrow of time, etc., in this

time-independent model. Furthermore, they serve as the measures of plastic irreversibility and are crucially

important in the evolutions of material properties and parameters and also in the determination of re-

sponses as shown in Eqs. (27), (28) and (31). Once Z is obtained, the other parameters are readily calculable

through the integrals of the material homeomorphic functions listed in Table 1. Hence, Eq. (47) or Eq. (46)

deserves a further study.

7. Material functions in terms of Z

By Eqs. (41) and (44) the irreversibility parameter Z and the equivalent generalized plastic strain qa0 are
closely related, being bijective, invertible, and strictly monotonic. This fact of equivalence can be utilized to

accelerate the calculation of the material responses. For the generalized strain-controlled processes we may

thereby change the dependence of the defined material functions on qa0 to directly on Z, and thus all the

material functions with the arguments qa0 turn to the material functions simply with the arguments Z
through Eq. (44). Even the process listed in the above is available to reveal the function dependence of

Q0
aðZÞ, kpðZÞ and so on. But they are not so straightforward. In this section the relationships of the material

functions are further studied from a different point-of-view.

Table 1

Relationships between irreversibility parameters

_qqa0 _YY _ZZ _KK _XX 0
a

_XX 0
c

_qqa0 1
Q0

a

ðke þ kpÞY
b

Q0
aY

1

Q0
a

b
keY

b½1� 2q0Q
0
að0Þ�

keY ½1� 2q0X 0
c �

2

_YY
ðke þ kpÞY

Q0
a

1
bðke þ kpÞ
ðQ0

aÞ
2

ðke þ kpÞY
ðQ0

aÞ
2

bðke þ kpÞ
keQ0

a

bðke þ kpÞ½1� 2q0Q
0
að0Þ�

keQ0
a½1� 2q0X 0

c �
2

_ZZ
Q0

aY
b

ðQ0
aÞ

2

bðke þ kpÞ
1

Y
b

Q0
a

ke

Q0
a½1� 2q0Q

0
að0Þ�

ke½1� 2q0X 0
c �

2

_KK Q0
a

ðQ0
aÞ

2

ðke þ kpÞY
b
Y

1
bQ0

a

keY
bQ0

a½1� 2q0Q
0
að0Þ�

keY ½1� 2q0X 0
c �

2

_XX 0
a

keY
b

keQ0
a

bðke þ kpÞ
ke
Q0

a

keY
bQ0

a

1
1� 2q0Q

0
að0Þ

½1� 2q0X 0
c �

2

_XX 0
c

keY ½1� 2q0X
0
c �

2

b½1� 2q0Q0
að0Þ�

keQ0
a½1� 2q0X

0
c �

2

bðke þ kpÞ½1� 2q0Q0
að0Þ�

ke½1� 2q0X
0
c �

2

Q0
a½1� 2q0Q0

að0Þ�
keY ½1� 2q0X

0
c �

2

bQ0
a½1� 2q0Q0

að0Þ�
½1� 2q0X

0
c �

2

1� 2q0Q0
að0Þ

1
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In order to give the dependence of the material functions on Z directly, we combine Eqs. (45) and (26) to

get

exp

Z qa
0

0

keðpÞ þ kpðpÞ
Q0

aðpÞ
dp

� 

¼ Y ðZÞ: ð50Þ

Derivating both sides with respect to qa0, applying the chain rule on the right-hand side and then using Eq.

(43)2, we obtain

bðqa0Þ½keðqa0Þ þ kpðqa0Þ�
ðQ0

aðqa0ÞÞ
2

¼ Y 0ðZÞ: ð51Þ

Similarly, the derivative of Eq. (32) with respect to qa0 and the use of Eq. (43)2 give

bðqa0Þkeðqa0Þ
ðQ0

aðqa0ÞÞ
2

¼ Y 2ðZÞC0
eðZÞ: ð52Þ

By dividing the above two equations we obtain

keðqa0Þ þ kpðqa0Þ ¼
keðZÞY 0ðZÞ
Y 2ðZÞC0

eðZÞ
; ð53Þ

or in terms of Z,

kpðZÞ ¼ keðZÞ
Y 0ðZÞ

Y 2ðZÞC0
eðZÞ

�
� 1



: ð54Þ

The replacement of b in Eq. (52) by the one in Eq. (35) and the substitution of Eq. (53) into the resultant

yield

k2e ðZÞ
Y 2ðZÞC0

eðZÞ
¼ ðQ0

aðqa0ÞÞ
2 Q00

a ðqa0Þ
�

þ keðZÞY 0ðZÞ
Y 2ðZÞC0

eðZÞ



: ð55Þ

By the chain rule and the use of Eq. (43)2 the term Q00
a ðqa0Þ in the above equation can be written as

Q00

a ðqa0Þ ¼ Q00

a ðZÞ
Y ðZÞQ0

aðZÞ
bðZÞ : ð56Þ

Upon using Eqs. (53) and (35) it can be arranged to

Q00

a ðqa0Þ ¼
Q0

aðZÞQ00
a ðZÞ

keðZÞY 0ðZÞ
Y ðZÞC0

eðZÞ

keðZÞ � Y ðZÞQ0
aðZÞQ00

a ðZÞ
; ð57Þ

which is then substituted into Eq. (55), giving

k2e ðZÞ
Y 2ðZÞC0

eðZÞ
¼ ðQ0

aðZÞÞ
2

Q0
aðZÞQ00

a ðZÞ
keðZÞY 0ðZÞ
Y ðZÞC0

eðZÞ

keðZÞ � Y ðZÞQ0
aðZÞQ00

a ðZÞ

2
4 þ keðZÞY 0ðZÞ

Y 2ðZÞC0
eðZÞ

3
5: ð58Þ

With some algebraic manipulations the following differential equation relating Y ðZÞ and ðQ0
aðZÞÞ

2
can be

obtained,

d

dZ
ðQ0

aðZÞÞ
2 þ 2Y 0ðZÞ

Y ðZÞ ðQ0
aðZÞÞ

2 ¼ keðZÞ
Y ðZÞ : ð59Þ

This equation provides an interesting relation among the three material functions keðZÞ, Q0
aðZÞ and Y ðZÞ.
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If Y ðZÞ and keðZÞ are given then the solution of ðQ0
aðZÞÞ

2
obtained from Eq. (59) is

ðQ0
aðZÞÞ

2 ¼ 2

Y 2ðZÞ

Z Z

0

keðpÞY ðpÞdp þ
ðQ0

að0ÞÞ
2

Y 2ðZÞ ; ð60Þ

and, if Q0
aðZÞ and keðZÞ are given then the solution of Y ðZÞ obtained from Eq. (59) is

Y ðZÞ ¼ 1

Q0
aðZÞ

Z Z

0

keðpÞ
Q0

aðpÞ
dp þ Q0

að0Þ
Q0

aðZÞ
: ð61Þ

CeðZÞ is calculated from Eq. (54) by

CeðZÞ ¼
Z Z

0

keðpÞY 0ðpÞ
½keðpÞ þ kpðpÞ�Y 2ðpÞ dp; ð62Þ

and kpðZÞ is evaluated by Eq. (54). Similarly,

CðZÞ :¼
Z Z

0

C0
eðpÞ

keðpÞ
dp ð63Þ

is obtained from Eq. (29) by changing the integration variable by means of Eqs. (42) and (52).

Eq. (60) provides a functional relation between ðYQ0
aÞ

2
and keY , and Eq. (61) a functional relation be-

tween YQ0
a and ke=Q0

a. The above two equations are consistent. Interestingly, the parameter YQ0
a has already

appeared in several places, for example, Eqs. (29), (32), (41)–(43), etc. In Section 9 we will reveal the im-

portance of the parameter YQ0
a for further understanding of the mixed-hardening plasticity model.

8. Operators in terms of Z

Once Z is obtained, the material functions Q0
aðZÞ and kpðZÞ are specified, and Y ðZÞ and CeðZÞ are

evaluated via Eqs. (61) and (62) (or Y ðZÞ and CeðZÞ are specified, and Q0
aðZÞ and kpðZÞ are evaluated via

Eqs. (60) and (54)), QaðtÞ and QðtÞ can be calculated respectively by

QaðtÞ ¼
1

Y ðZðtÞÞ Y ðZðtiÞÞQaðtiÞ
�

þ
Z t

ti

keðZðnÞÞY ðZðnÞÞ _qqðnÞdn



; ð64Þ

QðtÞ ¼ QðtiÞ þ GsðZðtÞ; ZðtiÞÞ½ � GsðZðtiÞ; ZðtiÞÞ�
QaðtiÞ
keðZðtiÞÞ

þ
Z t

ti

GsðZðtÞ; ZðnÞÞ _qqðnÞdn; ð65Þ

where

GsðZ1; Z2Þ :¼ keðZ2Þ 1f � Y ðZ2Þ CeðZ1Þ½ � CeðZ2Þ�g: ð66Þ
Similarly, the generalized plastic strain is calculated by

qpðtÞ ¼ qpðtiÞ þ
GpðZðtÞ; ZðtiÞÞ

keðZðtiÞÞ
QaðtiÞ þ

Z t

ti

GpðZðtÞ; ZðnÞÞ _qqðnÞdn; ð67Þ

where

GpðZ1; Z2Þ :¼ keðZ2ÞY ðZ2Þ CðZ1Þ½ � CðZ2Þ�: ð68Þ
A numerical procedure based on the discretizations of Eqs. (47), (64), (65) and (67) can be developed to

calculate the responses of mixed-hardening elastoplastic model under general loading conditions. However,

this important computational issue is reported by Liu (submitted for publication) in other place.
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9. Augmented differential equations system

From Eqs. (46) and (64) we have 1

_ZZ ¼ Y ðZÞQt
a
_qq; ð69Þ

and from Eqs. (25), (26), (44) and (45) we have

d

dt
½Y ðZÞQa� ¼ keðZÞY ðZÞ _qq; ð70Þ

which can be rearranged to

d

dt
½Y ðZÞQa� ¼ Y ðZÞQ0

aðZÞ
keðZÞ
Q0

aðZÞ
_qq: ð71Þ

On the other hand, multiplying Eq. (61) by Q0
a on both sides, taking the time derivative and then using Eq.

(69) we obtain

d

dt
½Y ðZÞQ0

aðZÞ� ¼ Y ðZÞ keðZÞ
Q0

aðZÞ
Qt

a
_qq: ð72Þ

Let us introduce

Xa ¼
Xs

a

X 0
a

� 

:¼ YQa

YQ0
a

� 

ð73Þ

as the augmented (nþ 1)-dimensional state vector, 2 where X 0
a is another irreversible parameter, and Table

1 shows its relations with the other irreversible parameters. Correspondingly, Xs
a :¼ YQa is the spatial part

of Xa in the Minkowski spacetime, and we may call it the augmented generalized active stress. Moreover,

from Eqs. (39), (72) and (73) it follows that

_XX 0
a ¼

keX 0
a

ðQ0
aÞ2

Qt
a
_qq > 0 if kQak ¼ Q0

a and Qt
a
_qq > 0;

0 if kQak < Q0
a or Qt

a
_qq6 0:

(
ð74Þ

Thus, Eqs. (71) and (72) can be combined together as following equations system:

_XXa ¼ AXa; ð75Þ
where

A :¼ ke
Q0

a

0n�n _qq
_qqt 0

� 

: ð76Þ

Define the proper time s as follows:

ds ¼ ke
Q0

a

dt; s ¼ si þ
Z t

ti

keðnÞ
Q0

aðnÞ
dn; ð77Þ

1 Because Y ðZÞQa is the augmented generalized active stress, we may correspondingly call _ZZ the augmented generalized active

power.
2 From Eqs. (73) and (61) we have _XX 0

a ¼ ke _ZZ=Q0
a > 0 in the on phase, and thus X 0

a is a time-like parameter which can be viewed as

the temporal component of Xa in the Minkowski spacetime.
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where ti is an initial time and si is the corresponding initial proper time. Since the term ke=Q0
a in Eq. (76) is

positive, the proper time s is a monotonic function of the external time t. The on-off switching criteria in Eq.

(74) can thus be written as

dX 0
a

ds
¼

X 0
a

Q0
a
Qt

a
_qq > 0 if kQak ¼ Q0

a and Qt
a
_qq > 0;

0 if kQak < Q0
a or Qt

a
_qq6 0:

(
ð78Þ

In terms of the new time scale s, Eq. (75) becomes

d

ds
Xa ¼ BXa; ð79Þ

where

B :¼ 0n�n _qq
_qqt 0

� 

: ð80Þ

It can be seen that in this augmented space Xa ¼ ðYQt
a; YQ

0
aÞ

t
, the governing equations become linear

with respect to s and are more tractable than the original nonlinear equations.

From Eqs. (79) and (80) a deeper understanding of the underlying structure of the model may be

achieved as to be done in Sections 10–12.

10. The Minkowski spacetime

In Section 9 we found that even the constitutive equations are nonlinear in the n-dimensional state space

of generalized active stresses Qa, but they can be transformed to linear differential equations in the (nþ 1)-

dimensional augmented state space of Xa through a time scaling. In the augmented space not only the

nonlinearity of the model is unfolded, but also an intrinsic spacetime structure of the Minkowskian type

will be brought out.

Now we translate the mixed-hardening elastoplastic model postulated in Section 1 in the state space of

Qa to one in the augmented state space of Xa. Accordingly the first row in Eq. (79), and Eqs. (18), (16) and

(17) become

In 0n�1

01�n Xt
agXa

� 

dXa

ds
¼ 0n�n _qq

01�n 0

� 

Xa; ð81Þ

Xt
agXa 6 0; ð82Þ

dX 0
a

ds
P 0; ð83Þ

in terms of the Minkowski metric (in the space-like convention)

g :¼ In 0n�1

01�n �1

� 

; ð84Þ

where In is the identity matrix of order n. The vector space of augmented states Xa endowed with the

Minkowski metric tensor g is referred to as Minkowski spacetime, and designated as Mnþ1.

Regarding Eqs. (16) and (82), we further distinguish two correspondences:

kQak ¼ Q0
a () Xt

agXa ¼ 0; ð85Þ
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kQak < Q0
a () Xt

agXa < 0: ð86Þ
That is, a generalized active stress state Qa on (resp. within) the yield hypersphere kQak ¼ Q0

a in the

generalized active stress space of (Q1
a; . . . ;Q

n
a) corresponds to an augmented state Xa on the cone

fXajXt
agXa ¼ 0g of Minkowski spacetime (resp. in the interior fXajXt

agXa < 0g of the cone). The exterior
fXajXt

agXa > 0g of the cone is uninhabitable since kQak > Q0
a is forbidden. Even though it admits an in-

finite number of Riemannian metrics, the yield hypersphere Sn�1 of Qa does not admit a Minkowskian

metric, nor does the space of (Qt
a; Y ). It is the cone of Xa which admits the Minkowski metric.

From Eqs. (34), (73) and (84) it follows that

kQak ¼ Q0
a ) Xt

agð _qqt; _qqa0=bÞ
t ¼ 0: ð87Þ

Moreover, by Eqs. (73), (78)1, (79) and (84) we can prove that

fkQak ¼ Q0
a and Qt

a
_qq > 0g ) Xt

ag
dXa

ds
¼ 0: ð88Þ

If the model is in the on phase (i.e., not only kQak ¼ Q0
a but also Qt

a
_qq > 0), then from Eqs. (85), (87) and

(88) we assert that for an Xa-path on the cone, the augmented state Xa is M-orthogonal to itself, its tangent

vector dXa=ds and also its dual ð _qqt; _qqa0=bÞ. The so called M-orthogonality is an orthogonality of two (nþ 1)-

vectors with respect to metric (84) in Minkowski spacetime Mnþ1 (see, e.g., Das, 1993 and Naber, 1992).

On the other hand, X 0
a is frozen in the off phase as indicated by Eq. (78)2 and the augmented state Xa

stays in the closed n-disc Dn (i.e., closed n-ball Bn) on the hyperplane X 0
a ¼ constant in the space of

(X 1
a ; . . . ;X

n
a ;X

0
a ), the hyperplane being identified to be Euclidean n-space En, which is endowed with the

Euclidean metric In. In summary, the augmented state Xa either evolves on the cone when in the on phase or

stays in the discs of simultaneity, which are stacked up one by one in the interior of the cone and are glued
to the cone, when in the off phase.

11. Space-like paths in the Minkowski spacetime

The criteria in Eq. (39) ensure that

_qqa0½Q
t
a
_QQa � Q0

aQ
00

a _qq
a
0� ¼ 0 ð89Þ

no matter whether in the on or in the off phase. Substituting Eqs. (11)–(15) into the above equation and
using Eq. (23), we obtain

b _qqt _qqp ¼ ð _qqpÞt _qqp P 0: ð90Þ
Materials which satisfy such an inequality _qqt _qqp P 0 are said to be kinematically stable, e.g., Lubliner (1984).

Using Eq. (23) and the above equation we obtain

_qqa0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
b _qqt _qqp

p
: ð91Þ

Squaring of the above equation and using Eqs. (17) and (14), we get

ð _qqa0Þ
2 ¼ _qqa0

bQt
a
_qq

Q0
a

; ð92Þ

by which we have

ð _qqa0Þ
2
6

b _qqa0
Q0

a

kQakk _qqk; ð93Þ
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and using Eq. (18) the bound of _qqa0 can be derived,

_qqa0 6 bk _qqk ð94Þ
no matter in the on or off phase. This inequality tells us that the maximum value of the specific dissipation
power _KK ¼ Q0

a _qq
a
0 an admissible path in the state space may discharge is bQ0

ak _qqk. (On the other hand,

postulation (17) tells us that the minimum value of the specific dissipation power an admissible path may

discharge is zero.)

The solution of Eq. (79) may be viewed as a path in Mnþ1, which traces along the null cone Xt
agXa ¼ 0

given by Eq. (85). From which the derivative gives

Xt
agdXa ¼ 0: ð95Þ

Thus Xa is M-orthogonal to dXa. Furthermore, upon using this equation and Xt
agXa ¼ 0 we have

Xn
i¼1

ðdX i
aÞ

2 � ðdX 0
a Þ

2 ¼ 1

ðX 0
a Þ

2

Xn
i¼1

ðX i
aÞ

2
Xn
i¼1

ðdX i
aÞ

2

2
4 �

Xn
i¼1

X i
a dX

i
a

 !2
3
5: ð96Þ

So that by utilizing the Schwartz inequality we obtain

ðdXaÞ2 :¼ ðdXaÞtgdXa P 0: ð97Þ
Recalling that a path such that ðdXaÞtgdXa > 0 (resp: ¼ 0; < 0) is called a space-like (resp. null, time-

like) path in Mnþ1, we thereby conclude that the path Xaðs0Þ, si < s0 6 s, in the augmented state space is a

space-like or null path in the Minkowski spacetimeMnþ1 no matter in the on or in the off phase. Indeed, Eq.

(97) conveys a message that the nature of mixed-hardening elastoplasticity rejects time-like paths, so that

the time-like metric convention has to be rejected to avoid an unreasonable negative squared length. This is

the reason why we have adopted the space-like convention (84) for mixed-hardening elastoplasticity.

12. The proper orthochronous Lorentz group

In this section we concentrate on the on phase to bring out internal symmetry inherent in the model in

the on phase. Denote by Ion an open, maximal, continuous proper time interval during which the mech-

anism of plasticity is on exclusively. The solution of the augmented state equation (79) can be expressed as

in the following augmented state transition formula:

XaðsÞ ¼ ½GðsÞG�1ðs1Þ�Xaðs1Þ; 8 s; s1 2 Ion; ð98Þ
in which GðsÞ, called the fundamental matrix of Eq. (79), is a square matrix of order nþ 1 satisfying

d

ds
GðsÞ ¼ BðsÞGðsÞ; ð99Þ

Gð0Þ ¼ Inþ1: ð100Þ
On the other hand, from Eqs. (80) and (84) it is easy to verify that the control matrix B in the on phase

satisfies

Btgþ gB ¼ 0: ð101Þ
By Eqs. (101) and (99) we find

d

ds
½GtðsÞgGðsÞ� ¼ 0:
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From Eq. (100) we have GtðsÞgGðsÞ ¼ Itnþ1gInþ1 ¼ g at s ¼ 0, and thus prove that

GtðsÞgGðsÞ ¼ g ð102Þ

for all s 2 Ion. Take determinants of both sides of the above equation, getting

ðdet GÞ2 ¼ 1; ð103Þ

so that G is invertible. The 00 entry of the matrix equation (102) is
Pn

i¼1ðGi
0Þ

2 � ðG0
0Þ

2 ¼ �1, from which

ðG0
0Þ

2 P 1: ð104Þ

Here Gi
j; i; j ¼ 1; . . . ; n; 0; is the mixed ij-entry of the matrix G. Since det G ¼ �1 or G0

0 6 � 1 would violate

Eq. (100), it turns out that

det G ¼ 1; ð105Þ

G0
0 P 1: ð106Þ

In summary, G has the three characteristic properties explicitly expressed by Eqs. (102), (105) and (106).

Recall that the complete homogeneous Lorentz group Oðn; 1Þ is the group of all invertible linear

transformations in Minkowski spacetime which leave the Minkowski metric invariant, and that the proper

orthochronous Lorentz group SOoðn; 1Þ is a subgroup of Oðn; 1Þ in which the transformations are proper

(i.e., orientation preserving, namely the determinants of the transformations being þ1) and orthochronous

(i.e., time-orientation preserving, namely the 00 entry of the matrix representations of the transformations

being positive) (see, e.g., Cornwell, 1984). Hence, in view of the three characteristic properties we conclude
that the fundamental matrix G belongs to the proper orthochronous Lorentz group SOoðn; 1Þ. So the

matrix function GðsÞ of proper time s 2 Ion may be viewed as a connected path of the Lorentz group.

Furthermore, by Eq. (101), B is an element of the real Lie algebra soðn; 1Þ of the Lorentz group SOoðn; 1Þ.
From Eq. (78)1, dX 0

a =ds > 0 strictly when the mechanism of plasticity is on; hence, 3

X 0
a ðsÞ > X 0

a ðs1Þ > X 0
a ðs0Þ ¼ Q0

a; 8s > s1 > s0; s; s1 2 Ion; ð107Þ

which means that in the sense of irreversibility there exists future-pointing proper time-orientation from the

augmented states Xaðs1Þ to XaðsÞ. Moreover, such time-orientation is a causal one, because the augmented

state transition formula (98) and inequality (107) establish a causality relation between the two augmented
states Xaðs1Þ and XaðsÞ in the sense that the preceding augmented state Xaðs1Þ influences the following

augmented state XaðsÞ according to formula (98). Accordingly, the augmented state Xaðs1Þ chronologically
and causally precedes the augmented state XaðsÞ. This is indeed a common property for all models with

inherent symmetry of the proper orthochronous Lorentz group. By this symmetry a core connection among

irreversibility, the time arrow of evolution, and causality has thus been established for plasticity in the on

phase.

13. The Poincar�ee group

The proper orthochronous Lorentz group SOoðn; 1Þ constructed in the above is acting on the space Xa;

and what is the effect of the kinematic hardening on the group structure? In order to reply this question we

3 From Eqs. (17), (26) and (73) it follows that X 0
a ðsÞPX 0

a ðs0ÞPX 0
a ðsiÞPX 0

a ðs0Þ ¼ Q0
a for all sP s0 P si P s0, applicable to both the

on and off phases. Recall that s0 is the zero-value proper time at which all relevant values including qa0ðs0Þ ¼ 0.
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return to the derivation of Eq. (31) as follows. First, from Eqs. (15), (14) and (27), the generalized back

stress is integrated as follows:

QbðtÞ ¼ QbðtiÞ þ
Gbðqa0ðtÞ; qa0ðtiÞÞ

keðqa0ðtiÞÞ
QaðtiÞ þ

Z t

ti

Gbðqa0ðtÞ; qa0ðnÞÞ _qqðnÞdn; ð108Þ

where

Cpðqa0Þ :¼
Z qa

0

0

kpðpÞ
Y ðpÞQ0

aðpÞ
dp; ð109Þ

Gbðp1; p2Þ :¼ keðp2ÞY ðp2Þ Cpðp1Þ
�

� Cpðp2Þ
�
: ð110Þ

Both Cp and Gb are material functions. In terms of

Gaðp1; p2Þ :¼
keðp2ÞY ðp2Þ

Y ðp1Þ
; ð111Þ

it can be verified from Eqs. (26), (32), (33), (110) and (109) that

Gsðp1; p2Þ :¼ keðp2Þ 1f � Y ðp2Þ Ceðp1Þ½ � Ceðp2Þ�g ¼ Gaðp1; p2Þ þ Gbðp1; p2Þ: ð112Þ
Combining Eqs. (27) and (108) and noting Eqs. (12) and (112) yield Eq. (31) again. Equation (108) is an

integral representation expressing the generalized back stress in terms of the generalized strain rate history.

Now, introduce the space X with the following vector decomposition:

X ¼ Xa þ Xb :¼
YQa

YQ0
a

� 

þ Qb

0

� 

: ð113Þ

The group acting on the space X is the semi-direct product of the translation Tnþ1 and the proper ortho-

chronous Lorentz group SOoðn; 1Þ; usually such group is named the Poincar�ee group ISOoðn; 1Þ, or inho-
mogeneous Lorentz group (see, e.g., Kim and Noz, 1986).

14. Conformal spacetime

From Eqs. (11)–(13), (15) and (91) we have

ðdQaÞ2 :¼ kdQak2 ¼ k2ekdqk
2 � ðke þ kpÞ½ke þ kp þ 2Q00

a �ðdqa0Þ
2
; ð114Þ

which, with the aid of Eqs. (71)–(73), (39), (84) and (97), leads to

ðdXaÞ2 ¼ Y 2½ðdQaÞ2 � ðQ00

a Þ
2ðdqa0Þ

2� ð115Þ

no matter in the on or in the off phase. Especially, in the on phase we have Qa � dQa ¼ Q0
aQ

00
a dq

a
0 by the

plastic consistency condition, and for the nonperfect case, i.e., Q00
a 6¼ 0, we have

ðdXaÞ2 ¼ Y 2 kdQak2
"

� ðQa � dQaÞ2

ðQ0
aÞ

2

#
¼ Y 2ðQ00

a Þ
2 1

ðQ00
a Þ

2
ðdQaÞ2

"
� ðdqa0Þ

2

#
: ð116Þ

The metric line element ðdQaÞ2=ðQ00
a Þ

2 � ðdqa0Þ
2
defined in the space (Qt

a; q
a
0) indicates that the spatial sec-

tions expand (or contract) uniformly as described by the scalar function Q00
a ðqa0Þ. This form of the metric line

element is manifestly conformal to the Minkowski space Xa with a conformal scalar factor Y ðqa0Þ. The space
(Qt

a; q
a
0) is known as a Robertson–Walker spacetime (see, e.g., Hawking and Ellis, 1973 and Birrell and

Davies, 1982).
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In this occasion we would like to point out that the metric considered by De Saxce and Hung (1985),

who attempted to study plasticity models from a differential geometry view, is not a suitable one. Really, by

identifying ðQ0
aÞ

2 ¼ 2�rr2=3, dK ¼ Q0
adq

a
0 ¼ dj0 and dqpa ¼ dja with the notations used by De Saxce and

Hung, we readily obtain

dr2 ¼ ðdj0Þ2 � 2�rr2

3
dab dja djb

from the flow rule (14). See also Eq. (5.2) proposed by De Saxce and Hung, loc.cit. The above metric

vanishes no matter whether in the on or in the off phase. In this sense such metric is not a suitable measure

for its full degeneracy. More precisely, it is not a metric and also not a hyperbolic metric. So, De Saxce and

Hung asserting it as a hyperbolic metric on the base manifold is incorrect. Indeed, dr2 ¼ 0 is at most an

identity derived from the associated flow rule.

Eq. (75) is the governing equation of Xa ¼ ðYQt
a; YQ

0
aÞ

t
; and from Eqs. (71), (72), (26), (77) and (39) the

governing equation of ðQa;Q
0
aÞ is read as

d

dt
Qa

Q0
a

� 

¼ ke

Q0
a

0n�n _qq
_qqt 0

� 

Qa

Q0
a

� 

� bðke þ kpÞ

ðQ0
aÞ

2
Qt

a
_qq

Qa

Q0
a

� 

: ð117Þ

However, ðQt
a;Q

0
aÞ

t
is not a suitable spacetime structure, since dQ0

a may be negative in the softening range of

modeled material.

In order to obtain a suitable conformal spacetime structure, we introduce a scaling factor function qðqa0Þ
and consider the following augmented vector:

Xc ¼
Xs

c

X 0
c

� 

:¼ qQa

qQ0
a

� 

; ð118Þ

in which we need dðqQ0
aÞ > 0 in the on phase, and simultaneously the cone is preserved, i.e.,

ðXcÞtgXc ¼ 0: ð119Þ
Taking the time derivative of Eq. (118) and using (117) we obtain

d

dt
qQa

qQ0
a

� 

¼ _qq

q
qQa

qQ0
a

� 

þ ke
Q0

a

0n�n _qq
_qqt 0

� 

qQa

qQ0
a

� 

� bðke þ kpÞ

qðQ0
aÞ

2
qQt

a
_qq

qQa

qQ0
a

� 

: ð120Þ

If q satisfies

_qq
q
¼ ke

Q0
a

bðke þ kpÞ
qkeQ0

a

�
� 2q0



qQt

a
_qq; ð121Þ

where q0 is a constant whose range to be determined below, then in the space Xc the governing equations

are given by

d

dt
qQa

qQ0
a

� 

¼ ke

Q0
a

0n�n _qq
_qqt 0

� 

qQa

qQ0
a

� 

� 2keq0

Q0
a

qQt
a
_qq

qQa

qQ0
a

� 

: ð122Þ

By using the proper time s defined in Eq. (77) the above equations are further refined to

d

ds
qQa

qQ0
a

� 

¼ 0n�n _qq

_qqt 0

� 

qQa

qQ0
a

� 

� 2q0qQ

t
a
_qq

qQa

qQ0
a

� 

: ð123Þ

The above differential equations system is one of the conformal type, e.g., Anderson et al. (1982), with the
(nþ 1)-dimensional conformal parameters (q0 _qq; 0). The group generated from the above differential

equations system is a special type of conformal group.
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Eq. (121), after substituting _qq ¼ q0 _qqa0 and Eq. (39)1 for Q
t
a
_qq ¼ Q0

a _qq
a
0=b and cancelling _qqa0�s on both sides,

can be changed to the following Riccati differential equation:

q0 ¼ ke þ kp
Q0

a

q � 2keq0

b
q2: ð124Þ

Using Eq. (26) the solution of q is found to be

qðqa0Þ ¼
Y ðqa0Þ

1þ 2q0

R qa
0

0
keðpÞY ðpÞ

bðpÞ dp
: ð125Þ

On the other hand, from Eqs. (61) and (42) we have

dðYQ0
aÞ

dt
¼ ke

Q0
a

_ZZ ¼ keY
b

_qqa0 > 0 ð126Þ

in the on phase, such that the integral in Eq. (125) can be obtained explicitly,

qðqa0Þ ¼
Y ðqa0Þ

1� 2q0Q0
að0Þ þ 2q0Y ðqa0ÞQ0

aðqa0Þ
: ð127Þ

When q0 ¼ 0 we have q ¼ Y , and the differential equations system (79) is recovered from Eq. (123). We also

note that q0 can not be a negative constant value; otherwise, the above q will blow-up when Y increases to a

certain positive value.

From Eq. (127) the relation of Xa and Xc through Eqs. (73) and (118) is available,

Xc ¼
1

1� 2q0Q0
að0Þ þ 2q0X 0

a

Xa: ð128Þ

Furthermore, the metrics in both the spaces Xc and Xa can be proved to be related conformally as follows:

ðdXcÞ2 ¼
½1� 2q0X

0
c �

2

½1� 2q0Q0
að0Þ�

2
ðdXaÞ2 ¼

1

½1� 2q0Q0
að0Þ þ 2q0X 0

a �
2
ðdXaÞ2; ð129Þ

where

ðdXcÞ2 :¼ ðdXcÞtgdXc: ð130Þ

Finally, from Eq. (128) it is easy to prove that

_XX 0
c ¼ ½1� 2q0Q

0
að0Þ�

½1� 2q0Q0
að0Þ þ 2q0X 0

a �
2
_XX 0
a ¼ ½1� 2q0X

0
c �

2

1� 2q0Q0
að0Þ

_XX 0
a : ð131Þ

For the purpose of X 0
c > 0 to be an irreversible parameter as well, i.e., _XX 0

c > 0, by Eqs. (126) and (73) we

require 1� 2q0Q
0
að0Þ > 0, that is,

06 q0 <
1

2Q0
að0Þ

: ð132Þ

Thus, under this condition we have introduced another irreversible parameter X 0
c as the temporal com-

ponent of the conformal spacetime, the relations of which to the other irreversible parameters are listed in

Table 1. It includes two dimensionless irreversible parameters qa0 and Y , and also four stress dimension

irreversible parameters Z, K, X 0
a and X 0

c .
The hyperbolic geometric models that we studied for the mixed-hardening elastoplasticity are gov-

erned by the conformally isormorphic spacetimes. They are all differentiable manifold endowed with a
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pseudo-Riemann metric, which assigns at each spacetime point Xc an indefinite symmetric inner product on

the tangent space, which varying differentiably with Xc.

15. Conclusions

In this paper we have established two types formulations for mixed-hardening elastoplastic model of the

generalized stress and generalized strain: the flow model characterized by Eqs. (11)–(18) and the two-phase

linear differential system characterized by Eqs. (79) and (80). Even though the governing equations of the

generalized active stress are nonlinear in the n-dimensional space Qa we have found that it can be trans-
formed to linear differential equations in the augmented (nþ 1)-dimensional space Xa. In this space not

only the nonlinearity of the model can be unfolded, but also an intrinsic spacetime structure of the

Minkowskian type can be revealed, merely replacing the inequality in space Qa to the inequality in the

augmented space Xa. We also pointed out that the state matrix B is an element of the Lie algebra of

the proper orthochronous Lorentz group, hence the state transition matrix generated from the linear dif-

ferential equations was proved to be a type of the proper orthochronous Lorentz group. In the frame of the

Minkowski spacetime we have further proved that the action of the kinematic rule in the mixed-hardening

model causes a translation of the state X, which amounts to extend the proper orthochronous Lorentz
group to the proper orthochronous Poincar�ee group.

We have introduced a conformal factor q in Eq. (127) and thus a conformal spacetime Xc is derived. The

analytic models of hyperbolic geometry that we studied for the mixed-hardening elastoplasticity are gov-

erned by the conformally isormorphic spacetimes. They are all differentiable manifold endowed with a

pseudo-Riemann metric, which assigns at each spacetime point an indefinite symmetric inner product on

the tangent space, which varying differentiably. Mathematically speaking, the pseudo-Riemannian mani-

fold is a suitable underlying spacetime model for the mixed-hardening elastoplasticity.

Even we dealt only with mixed-hardening effect on the elastoplastic model without considering a more
inclusive Armstrong-Frederick kinematic hardening rule, 4 and/or large deformation, etc.; however, we

may further consider more sophisticated group actions on pseudo-Riemannian manifolds and thus makes

an explicit use of the powerful group-theoretic method to study plasticity from a global view. In this regard,

the present paper may open the way to plasticity research in a new direction.
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